If it's not what You are looking for type in the equation solver your own equation and let us solve it.
720x^2+1800x-720=0
a = 720; b = 1800; c = -720;
Δ = b2-4ac
Δ = 18002-4·720·(-720)
Δ = 5313600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5313600}=\sqrt{129600*41}=\sqrt{129600}*\sqrt{41}=360\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1800)-360\sqrt{41}}{2*720}=\frac{-1800-360\sqrt{41}}{1440} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1800)+360\sqrt{41}}{2*720}=\frac{-1800+360\sqrt{41}}{1440} $
| 2(u-4)-7=-4(-4u+3)-5u | | (b-3)/2=5/2 | | 5*6+7x-8x=4x+6 | | 150m-75m+47,750=51,250-175m | | 3(2x-7)+4=133 | | 2(y+3)=9y+13 | | -6y+24=-2(y+4) | | 3(x-9)=-6x+9 | | -2r-10=-3r | | 3(x-9)=6x+9 | | 264=233-v | | 64x+132=1040 | | 9x-4=3(3x+2) | | -5+23x=110 | | -4k+9=-9+10 | | x-6/4=13 | | -9w-17=2(w+8) | | n-40-26=-36 | | 7u=8u-9 | | -3n=-4n+3 | | 14(d+6)=4(d–3)+10d | | 6x+5-x=7(x-1) | | 6-3z=-2z | | 2x-(8-3x)=23 | | (7x-14)/21-39/52=5x/30 | | 8x-9=1/4(8x+12) | | 6−3z=-2z | | 2/5y+3/5y=-2 | | 9y=-9+8y | | 2/5y+2/5y=-2 | | 0.2(7+2t)=0.4+14 | | 223-u=278 |